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S U M M A R Y  
Electrochemical machining is the name given to the process of eroding metal by electrolysis. The anode in this process 
is a workpiece from which metal is eroded and the cathode is a shaped machine tool which is fed towards the work- 
piece (see Fig. 1). Erosion takes place when an electric potential is applied across the electrolyte filled gap between the 
tool and the workpiece. The electrolyte is pumped through the gap in order to remove the products of erosion. 

In this paper an attempt is made, under certain simplifying assumptions, to determine the resulting shape of the 
workpiece and the gap-sizes between the tool and workpiece. Basically two problems are treated in this paper; one for 
a plane-faced tool with complete insulation on the tool sides (see Fig. 2) and the other for an uninsulated straight sided 
tool (see Fig. 5). An exact complex variable technique is used and only minimal computer usage is required for final 
evaluations from derived analytic formulae. 

1. Introduction 

Electrochemical machining is the name given to the process of eroding metal by electrolysis. 
The anode in this process is a workpiece from which metal is eroded and the cathode is a 
shaped machine tool which is fed towards the workpiece (see Fig. 1). Erosion takes place when 
an electric potential is applied across the electrolyte filled gap between the tool and the work- 
piece. The electrolyte is pumped through the gap in order to remove the products of erosion. 

In this paper an attempt is made, under certain simplifying assumptions, to determine the 
resulting shape of the workpiece and the gap-sizes between the tool and workpiece. The 
mathematical model considered assumes that the problem is two-dimensional and also 
assumes the steady state situation, in which the boundary of the workpiece moves in the direc- 
tion of the tool feed at a constant rate equal to the tool feed rate. In addition changes in elec- 
trolyte conductivity which result from heating effects of the machining current, evolution of 
hydrogen gas, variations in hydraulic pressure etc. are assumed to be negligible and the conduc- 
tivity is taken to be constant. Basically two problems are treated in this paper ; one for a plane- 

tool feed 

i r ~s 
Figure 1. The general configuration. 
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faced tool with complete insulation on the tool sides (see Fig. 2) and the other for an uninsulated 
straight sidedtool (see Fig. 5). An exact complex variable technique is used and only minimal 
computer usage is required for final evaluations from derived analytic formulae. 

The problem as formulated in this paper has many features in common with problems 
connected with the magnetosphere, in which corpuscular flux of ions is incident on the earth's 
magnetic field [3]. Here the interest is to determine the shape of the magnetospheric boundary. 

In [-1], the authors consider the more general problem of a straight sided tool with side 
insulation extending to within a distance co (the land width) of its leading edge. The method 
used is in two distinct parts; an approximate mathematical relation being first derived (their 
equation (58)) followed by a numerical solution of Laplace's equation in a region with an 
unknown boundary. It should be noted, however, that our results appear to differ significantly 
from those in [1]. 

Krylov [2] attempts to solve the problem in the "reverse" direction. Assuming a given 
workpiece shape the appropriate tool configuration is determined. As stated in [2] this 
approach in general does not lead to a well-posed mathematical problem and results are 
quoted for three rather "theoretical" shapes. 

2. Formulation of the Problem 

When the steady state has been reached, the problem may be reduced to a time-independent 
one by taking axes Oxy moving with the tool with the x-axis in the direction of the tool feed. 
Inside the electrolyte the electric field is 

E = (E~, E,, 0). (1) 

Since div E : O  and curl E=O, we may use the methods of complex variable and take 

dw(z) 
=_ i E ,  - d z  ' (2) 

where z-=-x + iy and w = q5 + i4'. On the electrodes, the electric potential 4~ is a constant and 
we take 

q5 = 0 on the tool face, (3) 

~b = 4)o(>0) on the unknown surface S of the workpiece. (4) 

On any insulated surfaces of the tool, the normal component of the electric field is zero and 
so  

4' = constant on each of these surfaces. (5) 

In the steady state, the boundary S moves in the direction of the tool feed at a constant rate 
equal to the tool feed rate u. The normal erosion rate, which is proportional to the electric 
current o-(a4)/an), is therefore equal to u cos Z, where Z is the angle between the normal h to 
S and the x-axis. Thus, on S, 

aS 
an c cos Z, (6) 

where c is a constant. Now if s is the arc length measured along S in the direction of increasing 
Y, 

ay aS 84' 
cosz  = ~ s  and an - a s '  

Upon integration, the boundary condition (6) may be reduced to 

4' = c y .  (7) 
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3. Solution for a Plane Faced Tool with Insulation 

We now consider the case of a plane faced tool of width 2I with insulation extending behind 
the face as shown in Fig. 2. The configuration is symmetrical about the x-axis and since, from 
(7), 0 = 0 at A, we have 

0---0 on OA. (8) 

It is sufficient to consider the region OABCO. As a consequence of (5), we suppose that 

0 = 00(>0)  on B + C .  (9) 

The boundary conditions in the w-plane are displayed in Fig. 3. In view of these conditions we 

~ t F'-, B+ B_ 
I I 

~Y 

x 

~s 

Figure 2. A plane faced tool with insulation. 

x = 0  

C 

0 

y= l  

y = O/e 

A 

y = 0  Figure 3. The boundary conditions in the w-plane. 
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look for a solution of the form 

w ~ I( ~__J (10) z = - +  a. sin 2n+l)  rCw , 
C n=O 

where a, are real constants. The conditions on OA, AB and CO are then satisfied. The condition 
on BC implies that 

l=~-2~ .=o ~ a"c~  TZ~-o]Sinh ~ 2 n + l ) ~ ] .  O~<q~<q~o. 

Multiplying by cos [(2m + 1) ~ 0 ]  and integrating from ~b =0 t0 q~ = ~bo we obtain 

8(I-~o/C)(--  1)'q n+~ 
an = 7z(2n+ 1)(1-qZ"+') , (11) 

where q =exp (-mpo/~bo)< 1. (12) 
Thus 

W 8 (  ~ ) ~  ( ,( , ( - 1 ) n q " + ~  I rc~~ 
z =--c + I - .=0 , 2 n + l , , l _ q 2 , + l ,  sin 2n+l)  . 

Now 

dz 1 _  + 4 ( / _  9 ) 2  , - l ) 'q"++ [ +l)~Z~oo] dw c ~ o ~ cos (2. 

1 2 ( /  ~holKk Kilo) �9 = - + - cd 
C ~0  C / 7r ' 

where cd (Kw/Oo) - cd (Kw/qbo, k) is a Jacobi elliptic function with modulus k. 
The mapping ceases to be conformal at C and we require 

dz 
- 0  when w =  it) o . 

dw 

Now 

K ~ o  4'0 K l~ (~ )  = 7z K' 

and cd (iK')= k-~. Equations (13) and (14) then give 

- +  I -  - -  
c ~00 rc 

and so 

z = - cd / Kw-)  
c \ ~ o /  

_ w  Olog 
c z c ~  I1 - k sn ~ ) 1  ' 

When w= ~bo, z = he (say) where he = OA is the equilibrium machine gap. 
Now sn (K)= 1 and so 

h e qS~ [1 1 ( l + k ~  = -~- - ~ log 
\ l - k / J  

The total overcut h~ =B+ B_ is given by 

(13) 

(14) 

(15) 

(16) 

(17) 
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hoo = C0 l -  qS~ (18) 
c 2cK 

where from (15) 

~o 1K 
c - K ' - ~ "  (19) 

The configuration is therefore completely specified by the parameters qSo, c and/ .  The surface 
of the workpiece, given by (16) with w = q~o+ icy is shown in Fig. 2, for the case q =0.002. Here 
4)o/C= 1.014l, he=0.899l and h~ = 1.006l. 

For practical purposes the machine gap is very small and for this case q ~ 1. In the limit as 
q---,O, k--->O, K---+zc/2 and (17), (18) imply that 

h e = h~ = 4)o/C. (20) 

The total overcut is then equal to the machine gap. In order to examine this limiting configura- 
tion near the side BC of the tool we put 

2he z' (21) z n i l  + - -  , 
Ti 

240 (22) w =  i~o + - -  w', 
rc 

where z' and w' are non-dimensional, and let k-+0. Now as k ~ 0  

/ K w ' ~  1 
k s n i p / "  " sinw' 

and (16) gives 

/ 1 - i ei~"'~ iTz (23) 
2 

The equation of the workpiece surface is now given by (23) with w '=  (zc/2)(1-i) + iy' and is 

2 \ e re/2 - y' - -  

which may be written in the alternative form 

e x, +/-,~ + e x'-=/2 + e y" _ ~/2 = l (24) 

showing that the work piece surface is symmetrical about  the line x ' =  y'. This limiting con- 
figuration is shown in Fig. 4. It may be noted that when x ' =  0 

y' = 7r/2 - log (coth re/4) 

and so 

overcut at corner l 2 log (coth ~ ~--- 0.731 (25) 
machine gap \ 4 /  

4. The Solution for the Case of a Straight Sided Tool with no Insulation 

Here we consider a straight sided tool (symmetrical about the x-axis) with no insulation, as 
shown in Fig. 5, where we suppose that ~9 = Co at C. Since, for practical purposes, the machine 
gap he is very small, we shall only consider the limiting case as he--+0. In order to confine at- 
tention to the configuration near the side B+ C of the tool we again introduce the non-di- 
mensional quantities z' and w' given by (21) and (22). As he~0, the side effects near OA are 

Journal of Engineering Math., Vol .  4 {1970) 2 9 - 3 7  



34 D. E. Collett, R. C. Hewson-Browne and D. W. Windle 

, , l <  f r /2  > 
N 

I I I 

__  "r 0 

I " 

X '  

Figure 4. The limiting case for a plane faced tool with insulation. 

~'=~r/2 

~ ' = y ' - ~ / 2  

\ X'=y' 

T 0 ~:0 C--- /- ~'Y 

I 
V 
X 

Figure 5. A sketch showing the configuration for a straight sided tool without insulation. 
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negligible and it is evident that he~dpo/C. The limiting configuration, together with the ap- 
propriate boundary conditions, is shown in Fig. 6 where 

c~ = lira o - c l  (26) 
h ~ O  

is to be determined. 

B+ B / 

o,:o 

o T o,:o / - , ,  

A i 
I 
I 

X' 

Figure 6. The limiting case for a straight sided tool without insulation. 

Under the transformation 

w' = - i log (cosh (), (27) 

the w'-plane is mapped into the semi-infinite strip as shown in Fig. 7 where the boundary 
conditions are also displayed. 

In view of these conditions we look for a solution of the form 

z '=  w'+io;+i ~ b~e -(2"+I)~, (28) 

(O ~r/2) 

y'=0 

iC 

I1 = 0  

y' =-q.r'+ ~ 

B A 

X ' = 0  

0 

Figure 7. The boundary conditions in the ~-plane. 
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where b, are real constants. The conditions on AB and CO are then satisfied. On BC, (= it 1 
(say), and so 

n;o b" c~  1)tl = - c ~ - O '  = - e + l o g ( c o s  tl), 0~< t/ ~< 2 '  

giving 

b . =  4 c~(-1)" + ~ log(cos t l ) cos (2n+l ) t ld t  / . (29) 
2n+ 1 

Substituting for b,, (28) gives 

z '=w '+ic~-Z~ l~  \ ~ J  + 2i~" sinh ( f~ ~ l~ (c~ t/) c~ t / d t / s i n h  2 ( + sin 2 I? 

(s inh ( + i ]  1 f~ ( s inh~+i)d~.  (30) 
= w ' + i ~ 1 7 6  l~  + -  zc ~z tanh ~ l~ '\sinnh ~ -  i /  

Now the mapping ceases to be conformal at C and so we require 

dz' 
- - = 0  when ( = 0 .  (31) 
d( 

Using (30), this implies that 

= log 2 ,  (32) 

and so 

z' = w'+i log 2 + - tanh ~ log (sinh d" 
\s inh ~ -  i 

= w' + i log 2 2 ~i~ 1 
- ~ Jo P log [p + (p2 + 1)•] dp (33) 

using (27). 
On the workpiece surface w '=  n/2 + iy ' - i  log 2 and using (33), we obtain the equation for 

this surface, namely 

x ' -  ~ 2 I -~e'' 1 log [p+ (pZ + l)~]dp (34) 
2 n J0 P 

As x ' ~  - o %  y'--. oe and, as is to be expected, the total overcut is infinite. When x ' =  0, y '=  y*, 
where 

f] ey'v 1 7C 2 
P log [p+  (p2+ 1)+] dp = 4-  

giving 

overcut at corner 2y* 
- - 1 . 1 5 9 .  ( 3 5 )  

machine gap 

5. Conclusion 

In a previous investigation [1], for a straight sided tool with land width co, approximate meth- 
ods produced the ratio 

overcut at corner 
--- 1.7. 

machine gap 

The non-zero land width used in the paper is not specified but it seems probable that the 
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authors have assumed this ratio to be insensitive to co provided that co is large compared with 
the machine gap. However, in the exact theory presented in this paper for infinite land width, 
the value is 1.159 and it seems reasonable to suppose that for a finite land width this ratio is 
smaller. It is hoped that these methods may be extended to include other, more general, 
configurations and in particular the case of finite non-zero land widths. 
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